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Phase Reliability and the Refinement of Pseudosymmetric Crystal Structures 
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The assumption that the phases calculated from a trial structure are indeed correct results in incorrect 
estimates of the variances of parameters. Modifications to least-squares equations and the evaluation of 
appropriate weighting schemes are discussed. It is shown that for a non-centrosymmetric structure a 
unique minimum is not to be expected, establishing a strong case for initial refinement of crystal struc- 
tures with constrained refinement procedures. A method of obtaining an unbiased estimate of the 
variance -covariance matrix is given. 

Introduction 

Notation used in this paper is that developed in previous 
papers (Rae, 1973, 1974a) concerning the refinement of 
pseudosymmetric crystal structures. The subsequent 
implementation of the generally stated considerations 
in these papers (Rae, Robinson & Rodley, 1975) 
prompted further investigation of refinement procedure 
and data collection requirements. It is necessary to 
classify pseudosymmetric structures, as the nature of 
the problems encountered depends on this classification. 

Pseudosymmetry 

If we transform all points r in the unit cell to (0, t)r = 
0 r + t  where 0 is a point-group operation and t is a 
translation, the electron density becomes Q{(0,t)-lr} 
with corresponding X-ray structure factor Fc0.t)(S ) = 
e×p (2nit. S)F(0-1S) where S is the reciprocal-lattice 
vector of magnitude 2 sin 0/2. If (0,t) is an operator 
of order n then (0,t)"= (1,t) where t .  S is integral for 
any allowed value of S. For closure of the space group 
we regard operators (01,h) and (02,t2) as identical if 
01 = 02 and exp (2hi h . S ) =  exp (2nit2. S) for any al- 
lowed value of S. Since 

m" - -  1 

(0, t ) m ' : ( 0  m', ~ 0mt) 
m = O  

we obtain 
m'-- 1 

F(0. t)m,(S)--ex p (27H ~ 0rot. S)F(0-m's) . 
m = O  

If we define a quantity 

1 ~ exp (2nimm'/n)F(o, om,(S) (1) Fro(S) = H m'=l 

then we may describe the true electron density as 

n--I 
0(r) = ~ 0m(r) 

m=0 

and the true structure factor as 

n--I 
F(S) = ~ F,,(S) 

m=0 
where 

Ore(r) = n exp ( -  2nimm'/n)o{(O,t)-m'r} (2) 
m'= 1 

is an apparent electron density giving rise to the 
structure factor Fro(S). 

If 0S = S then F(o. om,(S) = exp (2nim't. S)F(S) and 
Fr,(S)=0 unless exp(2ni t .  S)=exp(2nim/n) under 
which condition F(S) = F,,(S) and is the structure factor 
for the apparent electron density Qm(r). 

Now if (0,t) is a symmetry element, Qm(r)--0 unless 
m =0,  whereas, if (O,t) is a pseudosymmetry element, 
Q0(r) is the electron density assuming the pseudosym- 
metry is real. The components F,,(S) of the structure 
factor may be associated with the components Qm(r) of 
the electron density which describe the asymmetry. 

If  the pseudosymmetry element is the inversion 
operator (1,0) then F0(S)=½{F(S)+F( -S)}  and FI(S) 
= ½ { F ( S ) - F ( - S ) }  corresponding to ½{0(r)+0(-r )}  
and ½{0( r ) -0 ( - r )}  respectively. To allow for anom- 
alous scattering it is convenient to use an operator 
K(T,0) where the operator K changes the scattering 
density to its complex conjugate. 

Thus F0(S)= A(S) corresponding to ½{0(r) + 0 ( - r ) *  } 
and FI(S) = iB(S) corresponding to ½{0(r) - 6 ( -  r)*}. 

The number of pseudosymmetry elements is always 
an integral multiple of the number of true symmetry 
elements and any pseudosymmetry element is describ- 
able with appropriate choice of origin as a product of 
symmetry and pseudosymmetry elements (0a, t3) (02, t2) 
(01,h) (00,to) where (O0,to) is a real symmetry element 
and the other operators are either the identity element 
(1,0) or else a pseudosymmetry element of definite 
type. (01, h) may be a pseudosymmetry element which 
if real would increase the Laue symmetry of the space 
group and (01, tl)n = (1,0) under the conditions of clo- 
sure for every value of n for which 02 = 1. (02, t2) may 
be the operator (T,0) and (03,ta) may be (1,ta) where 
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ta. S may be nonintegral for allowed values of S. 
Since (] , t  0 (T, t2 )=(1 , t l - t2 )  only one pseudo or real 
inversion operator need be included and this may be 
placed at the origin. 

If the pseudosymmetry operator K(T,0) is used 
instead of (T,0) when applicable, then the pseudo- 
symmetry operators just described each have a mu- 
tually independent way of obtaining Fro(S) values. We 
may always form an invariant subgroup from genera- 
tors of the type (00,to) and (0~,t0 with an Abelian 
factor group obtained from generators of the type 
(02,t2) and (03,ta). This implies that the limited factor 
groups permitted by our restricted choice of (02, t2) and 
(0a, ta) are of no consequence in understanding the prob- 
lem. Initial operation by generators of the type (00, to) 
and (01, h) only change the value of S being considered. 

O) The pseudosymmetry operator (1, t) 
0S = S for all data when (0,t) is the pseudotransla- 

tional operator (1, t) so that Fro(S) =0  unless exp (2z~it. S) 
=exp (2zcim/n) when F,,(S)= F(S). n is the order of the 
symmetry operation (1,t). If  disordering over atom 
sites is used to describe Q0(r) which is the Fourier 
transform of F0(S) then this model is incapable of 
phasing data for which t .  S is non-integral. 

(ii) The pseudosymmetry operator ((, O) 
The pseudosymmetry may cause extra reflexions 

when 0S = S for some 0 (e.g. space group P2 instead of 
P2/c). In this instance a pseudosymmetry operator 
(0,t) exists which is a product of a real symmetry 
element and (T,0) and t .  S may be non-integral. (0,t) 
is necessarily of order 2. When 0S = S and t .  S is inte- 
gral then F ( S ) = F ( - S )  so that Fx(S) is zero and when 
0 S = S  and t .  S is half integral F ( S ) = F ( - S )  so that 
F0(S) is zero. 

If no extra reflexions are possible (e.g. space group 
Pna2~ instead of Pnma) then there is always a choice 
between a disordered structure of electron density 00(r) 
and an ordered structure of electron density 0(r)= 00(r) 
+ 0~(r). F~(S) cannot be phased from F0(S) and, when 
no extra reflexions occur as a result ofpseudosymmetry 
not being real, the reality of 0~(r) can only be estab- 
lished by tests for physical effects associated with the 
non-centrosymmetric space group or by significant 
improvement in the matching of observed and calculated 
values of F(S). This makes low-intensity data and extra 
reflexions very important since only then can FI(S) 
greatly affect the magnitude of F(S). Likewise if (0, t) 
is a real or pseudosymmetry element, data for re- 
flexions with 0S = S and t. S integral are very important 
as these data are free of any error associated with F~(S). 

(iii) The simultaneous existence of pseudosymmetry 
operators (1,t) and (T, O) 

Alternative factor groups of pseudosymmetry oper- 
ators which do not alter the Laue symmetry are 
describable as a product of various powers of the 
generators (1,t), (i,0) and a real symmetry element 

(00,t0) where (00,t0) is of order 2. These alternative 
factor groups are Abelian. Consequently if n is the 
order of the Abelian factor grout? then by using the 
operator K in conjunction with (1,0) we can identify 
components F,,(S), m =  1 to n where F,,(S) is either 
zero, the real or the imaginary component of F(S). 
If  F(S) is the Fourier transform of Q(r) then F*(S) is 
the Fourier transform of K(T,0) Q(r)=0*(-r).  KzZnC14 
(Klug & Sears, 1945; Dix, 1972) has pseudosymmetry 

m 

generators (1,a/3) and (1,0) and space group Pna21. 
The factor group may alternatively be described by 
the generator K(mc, a/3 +e/2) where the mirror opera- 
tion m~ changes z to - z .  From (1) we obtain 

Fm(hkl)=~[1 + 2 cos {2n(m+h)/3}] [F(hkl) 

+ ( -  1)~ +'F*(hfcl)] 

=-~[1 + 2 cos {2n(m+h)/3}] [F(hkl) 

+ ( -  1)'F*(hkl)] , 

which is the same result as would be obtained with 
generators (1, a/3) and K(T,0) separately. 

(iv) Pseudosymmetry elements which i f  real would in- 
crease the Laue symmetry 

Pseudo-equivalent reflexions are of different intensity 
and the symmetry may be resolved by initial phasing 
from the model Q0(r) and simply removing constraints 
on certain positional, occupancy and temperature 
parameters. It is the difference in amplitudes of pseudo- 
equivalent reflexions which resolves the asymmetry. If 
the cyclic subgroup of the pseudosymmetry generator 
is of an order n, where n is not a prime number, then 
there may be a subgroup of n' true symmetry elements 
(e.g. space group P21 rather than P41). In this case 
Fro(S) is zero if m ¢ 0  unless mn'/n is non-integral and 
only those values of F¢o, om,(S) with m'n'/n non- 
integral need be included in the evaluation of F,,,(S) 
from (1). 

Least-squares refinement 

In the application of any iterative procedure the time 
per refinement cycle is an important factor which is 
weighed against the benefits to be obtained by opti- 
mizing the refinement per cycle. Consequently in de- 
riving least-squares equations certain terms are as- 
sumed to be zero. The nature of these assumptions 
determines the form of the least-squares equations. 
Equations derived in a previous paper (Rae, 1974a) 
are subject to such limitations. Least-squares estimates 
fir of true parameters fi~ were obtained by minimizing 
~A~,whAh, where Ah is the complex quantity (Fo)o~,-(Fc)h 

and wg -x is the expectation value of ]Ahl z when uj=fi j  
in the approximation A~,=Aoh-Zahj[uj-(Uj)o] where 

) 
a,j = (c~Fdc~Uj)oh = (3AJOu~)o~, + i(SBJ3uj)oh. The sub- 
script 0 implies evaluation involving parameters (u~)0 
and the subscript h implies the hth of n observables 
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and A'~' is the component at z~/2 to 
The least-squares equations may 
equal combination of least-squares 
and A"Au= B" where 

(the hth value of S in a crystallographic context). In 
matrix notation the equations are AAu = B where 

Air ~, (ah~w,a,j+ah~whahr*) 
h 

B i  = 1 ~ (a; iWhAo h -b an,w~Ao*h) , 
h 

and Au r = u r - (ur) o. 
If ~ is the phase of (Fo), and C~on is the phase of (F~)oh 

then we may describe An as A£+iA',' where A~ is the 
component of Ah in the direction of the phase of c~0~ 

this phase direction. 
be regarded as the 
equations A'Au = B' 

B,=B~+B~',  

Air = ~, a;,,wna'hr, Aij = ~, a;iwha'h'j , 
h h 

B',= ~, a;,WhAoh , 
h 

B;'= Z a£;whAo; ' 
h 

Aoh= exp (iC~oz,) (Aoh + iAo'h) , 

Aon= IFol,, cos (~,,-~oh)-IFclok, 

A£= IFol. sin (~k-~0n), 
a£~ = cos O~o,(3A~/gU~)oh + sin O~oh(~BJ~u~)oh 

and 

a~'t = - sin ~oh(3Ac/~U~)oh + COS OCo~(~BJ~u~)oh. 

The equations A'Au=B'  minimize ~WhlA~[ a and the 
h 

equations A"Au= B" minimize ~Wh[A'h'l z. 
h 

However, ~ is unknown and so expectation values 
of B~ and B~' must be estimated enabling estimation 
of expectation values of Au r from equations A(Au)= 
( B ' ) + ( B " ) .  It is possible to estimate the result of 
parameter changes by estimating lFo[h sin (~h--C~0~)as 
~,a£j(Aur) making (B~')=~A;j(Aur) so that the 
J J 

equations to solve become A'(Au)= (B ' )  where (B~)= 
Za~,wh([Fo[,(cos (ah--a0h))--IF~[0n). This assumes that 
h 

the equations A ' ( A u ) = ( B ' )  and A " ( A u ) = ( B " )  have 
a unique simultaneous solution. However as pointed 
out previously (Rae, 1974b) and verified experimentally 
(Rae, Robinson & Rodley, 1975), if ( B " ) = 0  and 
( B ' ) ¢ 0  then values of (Au) given by (Au)= (A' + 
2A")-I(B ')  will satisfy the equations A ' (Au)=(B ' )  
since A"(Au)=O is a redundancy relationship. These 
values also satisfy A(Au)=(B ' ) .  If we assume 
(cos (a~--C~0h))= 1 for all data then ( B " ) - 0  and we 
only obtain one of many equivalent solutions of 
A'(Au) = (B') ,  customarily choosing the solution cor- 
responding to 2=0.  If the solution corresponding to 
2=  1 is used instead, parameter shifts are damped, 

minimizing the change in phase and allowing the 
refinement of centrosymmetric structures in non-cen- 
trosymmetric space groups. In the light of these ob' 
servations a reappraisal of the estimation of the 
covariance matrix is obviously required and is consid- 
ered later. 

Modifications to the least-squares equations 

A feature of the equations derived by Rae (1974a) is 
the apparent assumption that either (IDhl2)=(ID'h'l 2) 
or D~' =A'h' =0  since equal weights are given the hth 
observable for inclusion in the component equations 
A ' ( A u ) = ( B ' )  and A"(Au)=(B" ) .  D£ and D'h' are the 
values of A~ and A~,' respectively when uj = ~j for all j. 
This is obviously untrue as errors in phase contribute 
mainly to D'h' while errors in amplitude contribute 
mainly to D£. By choosing new residuals which are 
linear combinations of old residuals we can alter the 
form of the least-squares equations since different 
combinations of terms are assumed to be zero. For 
example, components Fro(S) rather than F(S) values 
themselves could be used where the Fro(S) values are 
constructed as in (1) from pseudo-equivalent reflexions. 

We wish to minimize the variance in a function 
f - fo=~d]uj- (Uj)o]  where f is the true value of f 

Y 

corresponding to parameters u j=~j  and f is the value 
o f f  corresponding to uj = @ The fij values are obtained 
from least-squares equations involving residual Ah= 
(Fo)on-(Fc)h where (Fc)h=(Fc)0h + Zakj[uj-(Ur)o] and 

ahr = (8FJOuj)oh. We assume t h a t f - ? m a y  be written as 

f - f=  ~ dr(~r-~r)= ~ C~Dh= ~ Chahr(~r--f~j) 
j h h 

where Dh is the value of Ah corresponding to uj=fi  J 
and d r = ~Chahr. Both Dh and D; should be included on 

h 
the list of residuals since if the Ch parameters are chosen 
so that the best least-squares estimate o f f - f  is ~ChDn 

h 

then the best least-squares esti mate off* - f *  is ~ C; D~. 
h 

The variance off  is defined as var (f)  = ( ( f - f ) * ( f - f ) ) .  
Simplification of the problem at this initial stage is 
made by assuming 

( ~ Dh*2Dh~Ch*zCh,) =0 , 
hi ¢ h2 

making var(f)=(~]C~,[ZlD,[2). The weights in the 
h 

subsequently derived least-squares equations are given 
by wZl=([Dh[ z) SO that the form of the resulting 
equations depends on what we regard as a residual, 
new residuals being describable as linear combinations 
of old residuals. In particular Dh may be described as 
exp (iflh) (a~ + iD'h') where 

2Dh=exp (-ifl,)Da +exp (ifl,)D~ 
and 

2iDh' =exp (-- iflh)Dh--exp (iflh)D~, 

A C 31A - 4 
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so that residuals Dh and D~ may be replaced by residu- 
als D~ and D'h" where both D~ and D;,' are real. fin may 
be chosen to have any value. Thus an alternative 
approximation to var (f)  is (YA C~I'IDLI 2 + ~lC'dlZlO'n'l ')  

h h 

assuming the sum of the remaining terms to be zero. 
If D~,' is necessarily zero we assume C'n'= O. 

We minimize 

var ( f ) - ~  {2j( ~ Cnanj-dj)+2;( ~ C~,a:.i-d;)} 
j h h 

where Lagrange multipliers 2j enable the evaluation 
of C~ values under the constraint d~= ~Cnanj. For var 

h 

( f )  to be a minimum 0 var (fb/3Ch=O implying 

(IOhlZ)C~, = ~ 2jan: 
1 

and 

Thus 

making 

and 

var ( f )=  ~ 2jdj= ~, 27d; . 
d Y 

dj= ~ 2~A u where A,j= ~a;,an.d(IDnl 2) 
i h 

J 

Ca= ~, dj(A- ~)j,a~,/ (IDnl') . 
q 

It follows that 

1 h q 

where 

B,= ~ a~,On/(IDnl2) • 

This equation is satisfied irrespective of the values of 
dj if 

• 

1 

The minimum value of var (f) is 

Z Vd;= Z 
i q 

and since 

f-f= 
J 

then 

M,j= ((~,- 5,)* (fO- 5J))=(A-1)~,=(A-1)5 " 

Also 

since 

(97Bj)=A5 

a j -  = (A-1 . Jr i 
i 

The inclusion of both Dn and D~ in the residual list 
implies that both At1 and B, are real for real parameters 
u~, making 

and 

where 

A,j= ½ ~ (an*~whanj + a,,,wnah*j) 
h 

B, = ½ ~ (a~,wnDa + amwnD~) , 
h 

w;l=(IOnlZ>. 

Since the parameters 5j are unknown, the param- 
eters a~ are obtained by extrapolation from parameters 
(uj)o for which there exist residuals Aoh. The equations 
become 

where 

and 

A,jAuj = B, 
J 

Au~=aj-(Ugo 

B l  = ~ wnaa*~Aon . 
h 

We have already seen that the inclusion of residuals 
Dn and Dn* enables the choice of alternative residuals 
D~ and D'n" from the transformation Dn = exp (ifln) (D~ 
+ iDa') where D~ and D'n' are real and fin is chosen so 
that D£ and D~' do not covary. Thus if we assume that 

t t  2 t t  (~([CLlZlGI z + Ifn I IOn [z)) is a better approximation 
h 

to var (f)  than is (YlGI21Dnl2), then 
h 

where 

and 

A,j=A~j+A~j, B,=B~+B~', 

A;= ~ a,;,w;a;j, A~j= ~ a;;w;'a;'.l, 
h h 

s;= B','= Z 
h h 

need not equal 

w,;= 1/(IDOl z) 

w',,' = 1/ (IO',:12> . (3) 

If we assume fin is ~Oh the phase of (Fc) h for initial 
parameters (u j)0, then the assumption that A'(Au)= 
(B ' )  and A"(Au)= (B") have a unique simultaneous 
solution is satisfied by solving the equations A'(Au)= 
(B ' )  and redefining the phase of (Fo)n to satisfy 
A" (Au)= (B"). However the concept of a unique 
simultaneous solution cannot be justified, as has been 
shown experimentally (Rae, Robinson & Rodley, 
1975), the solution obtained being dependent on the 
initial parameters, and hence on the initial choice 
of phase. This is accentuated in the case where a 
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crystal is almost centrosymmetric and the equations 
A'(Au) = (B ' )  are almost ill-conditioned. 

Estimation of variances and covariances 

The equations 

(A' + A") ( a -  ~) = B '  + B" 

were derived as the correct form of the least-squares 
equations with variance-covariance matrix 

M=(A' + A") -~ 

Implicit in this statement is the understanding that 

A ' ( a - f i )= /~ '  and A"(a-f i )  =/~" 

should not be expected to have simultaneous solutions. 
However since phases are not experimentally observ- 
able they must be determined in a biased way from the 
refinement itself. Since we have more phases than 
variables it is possible to constrain the choice of phase 
so that the equations 

A'(Au)=(B') and A"(Au)=(B") 

have simultaneous solutions with ( B " ) = 0 .  This will 
not give a unique solution since A"(Au)=O is now a 
redundancy condition so that the solution obtained 
depends on the value of the matrix 2 in the equations 

(A' + 2A")(Au)= (B') 
and the initial values of (Uj)o. 

Despite this source of systematic error we must still 
endeavour to estimate 

M,~ = ( ( a , -  fi,)*(aj - z~:)). 

Since phases cannot be measured, an unbiased estimate 
of M~j values should be from equations that do not 
constrain phase changes. Therefore 

A"(a-CO= <B")=O 
is subtracted from the least-squares equations to give 

and thus 

where 

A'(a-~)=B' + B " = B  

M i J =  ~ (A'-I),k(BkB,)fA'-~)t.I, 
kl 

provided a correct weighting scheme is used. 
This concept may be generalized to the case where 

weights w~ and w~' in (3) may not be correct and where 
certain linearly independent parameters uj,j=m + 1 to 
m' are excluded from the least-squares equations. The 
first m least-squares equations using the correct 
weighting scheme and all refinable parameters may 
be written as 

m m '  

j = l  j = m + l  

where a:_= (u:)0 for j >  m. If the only known contribu- 
tion to C~ is 

f . . . .  ... - 

m 

j = l  e . . . . . .  -- _~ . . . ' '  . . . . . .  ~- ,~_. . ,~. . . . . .  

then the unknown contribution is estimated as 

m t 

(A- Ao),j(aj- aj) =0 
j = l  

and, to exclude this unbiased estimate as a constraint 
on the solution, the equations are subtracted to give 

(A0),j(aj-  ~:) = C, 
j = l  

and hence M=A~'a(1 +2) if we say 

m t 

(CkC,)=Ak,+ 
i , j = m +  1 

=[(1 +2)Ao]k,; k,l=l to m.  (4) 

Because of these considerations there is an extremely 
good argument for using constrained refinement, hol- 
ding certain structural features to agree with what is 
expected, and only when such refinement is complete 
to allow those parameters which permit deviation from 
expectation to be refined. The use of equations (A'+ 
A")(Au)=(B') will reduce the shifts then obtained 
compared with the use of equations A'(Au)=(B'). 
The equations A'(Au)=(B') are of course almost 
twice as fast to use and allow faster convergence as 
they imply that A'(Au)=(B') and A"(Au)=(B") 
have simultaneous solutions, which, although not 
exactly true, is a good approximation in the early 
stages of refinement. It is difficult to see how minor 
deviations from equivalence in bond lengths and angles 
can be considered significant if initial constrained re- 
finement making this equivalence exact has not been 
used. Constrained refinement actually reduces com- 
puting time per cycle and there seems no reason why 
sophisticated constraint refinements should not come 
into more general use. 

Weighting schemes 

As has been pointed out (Rae, 1974a) the estimation 
of wh=(lDhl2) -~ values involves the estimation of 
three components, E1 the error in the amplitude of 
(Fo)o~, E2 the error in the phase of (Fo)ok and E3 the 
systematic error involved in the model 

Fh=(Fo)on + ~ a,]f i~-  (Uj)o] 
J 

to estimate the true value F, of the hth observable 
quantity since 

Dh=(Fo)o.- F~= E1 + E2 + E., 

A C 31A - 4* 
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where 

E~=(lFolh- IFnl)Fn/lFnl , Ez=(Fo)on- Fnl Foln/lFnl 

and 
E a = F n - F h .  

The inverse of the variance in the phase direction ah 
may be described as 1/a 2 = cos 2 (ah--flh)/~n + S in2 (an-- 
fln)/a~n where fin is the phase direction of the principal 
axis a~n of the variance-covariance matrix of Dn. Since 
the error in the amplitude of (Fo)on is a maximum in 
the phase direction of (Fo)0n, it may be presumed that 
fl~=c% so that in (3) w;,=l/a2n and w~','= 1/aZ~n . We 
must estimate (B~) with estimates (A0n)= IFoln(cos c~0n 
-~n))-lFc[0~ while we estimate (B~') as zero. The 
values of a2~ and a2~ are estimated as 

where 

~n = <IExI ~ + lEa? + IE31~)~, i=  1,2 

(IEl12>1 = (cos z (C~on- ~n)>~e(IFoln), 

([E~Ie>z = (sin z (Con- ~n)>aZ(IFoln), 

(IEz),I z= I Fol~ ( {cos (c~0n- an)- (cos (c~0n- an)) } ')  

= IFol~,( (cos'  (c~0h - an)) - (cos (Son - ~n) )z), 

and 

(IE212)z=lFol~(sin 2 (~0,,- ~n)) • (5) 

In case (2) (cos a ) =  Y(sin 2 ~) but (cos a)  must be 
evaluated numerically. For small values of Y(Y<0.1) 
( cosZ@=(s in2@=0.5 ,  while for large values of 
Y(Y> 100)(cos @ =  1.0. Tabulated values of (cos a)  
are given in Table 1. Values of (]Ez]Z)I and (IEzlZ)z 
[see (5)] are a~,g~[Fo[h/[Fclon and a~g2[Fo[~,/]Fc[ol, respec- 
tively where g~ = Y((cos ~ - ( c o s  @)z) and for case (2) 
gz= Y(sin 2 @ =  (cos @. We note the discrimination in 
favour of data with [F~[o, > ]Fob,. 

Table 1. Values of  (cos ~) and 
g t =  Y((cos c~- (cos @)z) where Y= IFolhlF~lo,,/a~ 

Cent rosymmet r ic  Non-cen t rosymmet r i c  

loglo Y (cos ~) gl (cos ~) gl 
- 1"0 0"100 0"099 0"050 0"050 
- 0 " 8  0"157 0"i55 0"079 0"079 
- 0 " 6  0"246 0"236 0"124 0"123 
- 0 " 4  0"378 0"341 0"195 0"188 
- 0"2 0"559 0"434 0"300 0"274 

0"0 0"762 0"420 0"446 0"355 
0"2 0"919 0"117 0"616 0"367 
0"4 0"987 0"065 0"766 0"271 
0"6 0"999 0"003 0"864 0"147 
0"8 1"0 0"0 0"917 0"083 
1 "0 1 "0 0"0 0"949 0"050 
1 "2 1 "0 0"0 0"968 0"030 
1"4 1"0 0"0 0"980 0"017 
1"6 1"0 0"0 0"987 0"010 
1 "8 1 "0 0"0 0"992 0"005 
2"0 1 "0 0"0 0"995 0"002 

To evaluate the expectation values of geometric 
functions of c%-ah it is helpful to attribute a variance- 
covariance matrix to (Fc)on since the parameters (u j)0 
are only estimates of the true parameters u~. If we 
assume the quantities X=[(Fo)n-(Fc)oh]/an all belong 
to the same normal distribution, where a 2 is var (F~)0n 
in the phase direction of (Fo)n-(F~)on, where (Fo)n = 
[Foln exp Jan, then we can allow a=eon-an to vary over 
the range 0-2n and so evaluate the expectation values 
of functions of ~ as 

fo ( f (~))  = P(oOf(oOdo~/ P(a)d .  

P(a) varies as exp (-1X[2/2) and so varies as exp {Y 
x(cos a -  1)} where Y=lFoln[FdJa~. 

If we assume that our initial structural model is 
unbiased, then any atom has equal probability of 
being displaced in any direction from its true position 
for the evaluation of (Fc)0h, there being no correlation 
between the displacements of non-symmetry-related 
atoms. There are then just two simple cases to consider: 

(1) P ( a ) = 0  unless ~=0 ,n ,  and 
(2) a~ and hence Y is constant with changing c~. 

In case (1) 

and 

(cos c~)= 1 -2 / (1  + exp 2 Y), (cos 2 @ = 1 

((cos a - @ o s  @)2)= 1 -  (cos @2. 

The values of (IEzlZ)e, i= 1,2 for a particular value 
of IS[ delbend upon index conditions. Symmetry 
related atoms at r and 0 r + t  make contributions to 
F(S) of 

and 

f(S)T(S) exp (2nir. S) 

f (S)T(O-aS) exp {2ni(r. 0 - 1 S + t .  S)}, 

where f (S)  is the scattering factor and T(S) the tem- 
perature factor for the atom at r. If 0 S ¢  + S  then 
random variation in r of individual atoms in the 
asymmetric unit will show no correlation with equiv- 
alent atoms related by the symmetry operation (0,t) 
when this random variation is averaged over all 
possibilities. 

However if 0 S = S  then t .  S must be integral for 
the reflexlon to be observed and two symmetry-related 
atoms make a contribution of 2f(S)T(S) exp (2nit.  S) 
to F(S). If 0S-- - S  then two symmetry-related atoms 
make a contribution of 

f(S) T(S) exp (2nir. S) 

+f(S) T ( -  S) exp ( -  2nir.  S) exp (2nit. S) 

to F(S). 
If we assume f ( S ) T ( S ) = f ( S ) T ( - S )  is real, then this 

contribution may be expressed as 2f (S )T(S)exp  
(nit.  S) cos (2hr.  S - n t .  S). In both these cases the 
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symmetry-related atoms show perfect correlation in their 
contribution to F(S). When OS=S atoms at r and 
Or + t  act as double-weight atoms while when OS = - S  
atoms at r and Or+t  act as double-weight atoms for 
changes in the phase direction n t .  S and as zero- 
weight atoms for changes in the phase direction 
nt . S + n/2. 

Let us consider for example the space group Pna2~: 
OS = S for Okl data and the equivalent position ½ - x ,  
½+Y,½+z; OS=S for hOl data and the equivalent po- 
sition ½+x,½-y,z;  and 0 S = - S  for hkO data and 
the equivalent positions 2,97,½+z. Thus we have case 
(1) for hkO, bOO and 0k0 with a~ for a particular value 
of IS[ having values of 2Z, 4Z and 4Z respectively 
while we have case (2) for hkl, Okl, hOl and 00l data 
with G,] having values of Z, 2Z, 2Z and 4Z respectively. 
If atoms are arranged pseudo-centrosymmetrically in 
the space group Pna21 then the assumption that the 
pseudosymmetry is real would result in all data be- 
longing to case (1) with a~ z for a particular value of IS[ 
having values o f2Z '  for hkl data, 4Z' for Okl, hOl and hkO 
data, and 8Z'  for h00, 0k0 and 00l data. a~ may be esti- 
mated by assuming (Fo)o, values are correct while the 
(Fc)0~ values are in error since the correct parameters zTj 
have not been used and by assuming that the statistical 
distribution of (A'oh) z values is the same as the statis- 
tical distribution of ah z values taking into account the 
effects of index conditions just discussed, a~ may be 
assumed to vary as ~(f~(S)T~(S)[S[) 2 wheref~(S) is the 

i 

scattering factor and Ti(S) the temperature factor of 
the ith atom. 

It remains to consider the systematic error con- 
nected with the extrapolation F,=(Fc)oh+~ah.i[fti-- 

J 

(u j)0] as an estimate of the true value of the hth ob- 
servable. The contribution to (IE31 z) from omitted 
atoms may be estimated as ~[f~(S)Tg(S)] z, where i is 

i 

summed over the omitted atoms. If there are no 
omitted atoms and it is assumed that all weights are 
simply out by a multiplying constant, then it may be 
readily shown that average values of w~12£1 z are larger 
for larger intensities [z]~ is the best least-squares value 
of the in-phase component of (Fo)oh--(F~),]. An exam- 
ple of this characteristic is given by Rae (1974a) for 
K2ZnCI4 where a pseudo-translational symmetry ele- 
ment (1,a/3) causes data with h¢3n to be much 
weaker than data with h=3n. For a final R of 0.064 

(w;,13;,IZ),=3M(w;,l~12),~3,=6.5 not 1.0 

when w~ was determined from counting statistics only. 
The consequent increased values of variances obtained 
by an incorrect weighting scheme were also discussed. 
It  is fairly realistic to regard a component of systematic 
error to be a constant percentage error in the intensity 
of observed data, the actual percentage being deter- 
mined to give a correct scale for Y~w',lA~12/(n-m). 

h 

Discussion 

An attempt has been made to use the different weighting 
schemes and different values of (cos ~) implied above 
to determine whether a structure was ordered, and 
thus had space group Pna21, or disordered, and thus 
had space group Pnma (Rae, Robinson & Rodley, 
1975). Definite improvements in R obtained using 
(cos ~) values rather than assuming (cos ~ ) =  1 are 
readily understood since data with [Fc[oh~[Fo]k has 
IFolh(coscz)~lfolh while data with IFc[oh>>lfolh has 
(cos ~ ) =  1. 

The structure factor F(S)=A(S)+iB(S) has A(S) 
corresponding to an apparent electron density 00(r)= 
½{0(r)+0(-r)*} and iB(S) corresponding to an ap- 
parent electron density 01(r)=½{0(r)-0*(-r)}.  

Only two atoms in the structure need necessarily be 
disordered to achieve the space group Pnam, it being 
possible to relate one half of the molecule to the other 
by a mirror plane at z=  ¼. An apparent substantiation 
of the space group Pna21 was initially made, giving 
a value of R=0.063 for data with [Fo[,>3a([Fo[h) 
compared with a value of R=0.074 for the centro- 
symmetric space group (Rodley & Robinson, 1972). 
However a greater degree of freedom was given to the 
description of 00(r) for the space group Pna21, allowing 
atom sites of symmetry-related atoms to be described 
by two approximately coincident half-weight atoms. 
This description of 00(r) in space group Pnam is not 
really feasible because constraining phases to be 0 and 
n makes the least-squares equations ill-conditioned 
with de t (A) -0  should any half-weight atoms coincide. 
It is the variation in phase from 0 and n that allows 
refinement in the space group Pna21. The contribution 
of 01(r) is most significant for weak intensities and so a 
better data set was collected and all data used to 
compare the two space groups. It was consequently 
shown that there is no justification for the space group 
Pna2~, this interpretation being understood as a coun- 
terbalancing of the improvement in the description of 
00(r) with the extra parameters available in space group 
Pna21, with the disadvantage of assuming 0~(r) to be 
non-zero. More detailed discussion is given elsewhere 
(Rae, Robinson & Rodley, 1975). 

Two important details should be considered with 
relation to problems such as the above. Approximately 
coincident half-weight atoms as described by 00(r) 
show bad covariance between positional and thermal 
parameters. These problems may be largely overcome 
in the non-centrosymmetric case by assuming equal 
isotropic temperature parameters for pseudo-equiva- 
lent atoms. However the mismatch in bond lengths 
and angles may still be bad as may be understood from 
the earlier discussion of the estimation of variances 
when certain refinable parameters are omitted from 
the least-squares equations. Systematic errors in the 
equal-isotropic-atom assumption cause systematic 
error in atom positions, this contribution to the error 
being ignored if we assume 
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m t 

(aj-aj))A:,=0 
i , j = m +  l 

in (4). 
In the centrosymmetric case it is impossible to de- 

scribe ~0(r) by a two-centred description of the proba- 
bility density of two approximately coincident half- 
weight atoms. However such a probability density 
can be most conveniently described as a single- 
centred description using higher-order cumulants. 

Rae (1975) has indicated how three third-order cu- 
mulant parameters and six fourth-order cumulant par- 
ameters may be used as an alternative to the three 
extra positional parameters and six extra temperature 
parameters to describe the electron density distri- 
bution as a deviation from the electron density for a 
single anisotropic atom. The mean of the electron 
density of two half-weight atoms is the mean of the 
means of the individual half-weight atoms, and the use 
of the three third-order cumulant parameters more 
accurately describes the mean, as it allows the mean 
and position of maximum probability to be non- 
coincident, the three parameters describing this dis- 
placement. The six fourth-order cumulants allow the 
electron density at the maximum to be different from 
that imposed by the single anisotropic atom that best 
describes the electron density. The seven third-order 
cumulant parameters omitted are incapable of dis- 
placing the mean from the position of maximum 
probability and the nine fourth-order cumulant param- 

eters omitted are incapable of changing the value of 
the electron density at the maximum. This approach 
however does not eliminate covariance problems, the 
third-order cumulant parameters and the positional 
parameters being highly covariant, as are the fourth- 
order cumulant parameters and the anisotropic thermal 
parameters. It is possible to fit two almost coincident 
anisotropic atoms to the probability density function 
described by the cumulant model, but this procedure 
is very dependent on the accuracy of the higher-order 
cumulants. Constraints on parameters and their con- 
sequent non-inclusion in the least-squares equations 
can be used to reduce the apparent variances of the 
remaining parameters, but this advantage can be illusory 
if the excluded parameters covary with the included 
parameters and suffer from systematic error. 
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Laue patterns of very thin single-crystal platelets of hexamethylbenzene at a temperature (80 K) below 
the cold.phase transition (116 K) have been recorded. In this colder phase (PD. III), whose flat plate 
pattern is interpretable as a precession photograph because of the probable ordered fragmentation of 
the sample, the crystal symmetry appears to be hexagonal (or trigonal), as confirmed also by previous 
optical and spectroscopic observations. The X-ray diffraction spectrum of the powder taken at the same 
temperature gives 3.59 /~ as the distance between the planes containing the molecular rings, and was 
indexed on the basis of a hexagonal cell with a=31.5, c=3.59 A, containing 12 molecules (probable 
space group P6mm, with all molecules lying in special positions); the length of the basal axis is exactly 
four times that of the elementary mesh obtained from the hexagonal grid on which the single-crystal 
pattern lies. 

Triclinic crystals of hexamethylbenzene (HM B) (Brock- 
way & Robertson, 1939) undergo a 2-type phase 
transition at 116 K (Frankosky & Aston, 1965) and 

until now conclusive structural data on the colder 
phase (Ph. III) have not been obtained either by X-ray 
or by neutron diffraction techniques because of the 


